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1. Introduction 

In recent decades, Hopfield neural networks have been 

extensively studied in many aspects and successfully 

applied to many fields such as pattern identifying, voice 

recognizing, system controlling, signal processing systems, 

static image treatment, and solving nonlinear algebraic 

system, etc. Such applications are based on the existence of 

equilibrium points, and qualitative properties of systems. In 

electronic implementation, time delays occur due to some 

reasons such as circuit integration, switching delays of the 

amplifiers and communication delays, etc. Therefore, the 

study of the asymptotic stability of Hopfield neural 

networks with delays is of particular importance to 

manufacturing high quality microelectronic Hopfield neural 

networks.  

 

While stability analysis of continuous-time neural 

networks can employ the stability theory of differential 

system (Liu et al. 2003), it is much harder to study the 

stability of discrete-time neural networks (Elaydi and 

Peterson 1990) with time delays (Arik 2005) or impulses 

(Gubta and Jin 1996). The techniques currently available in 

the literature for discrete-time systems are mostly based on 

the construction Lyapunov second method (Hale 1977). For 

Lyapunov second method, it is well known that no general 

rule exists to guide the construction of a proper Lyapunov 

function for a given system. In fact, the construction of the 

Lyapunov function becomes a very difficult task.  

 

In this paper, we consider delay-difference control 

system of Hopfield neural networks of the form 

 

( 1) ( ) ( ( )) ( )v k Av k BS v k h Cu k f       ,          (1) 

 

where ( ) nv k  R  is the neuron state vector, 0,h   

1{ , , }nA diag a a , 0ia  , 1,2,...,i n  is the n n  

constant relaxation matrix, B  is the n n  constant weight 

matrix, C  is n m  constant matrix, ( ) mu k R  is the 

control vector,
1( , , ) n

nf f f R  is the constant external 

input vector and 
1 1( ) [ ( ), , ( )]T

n nS z s z s z  with 

 1 , ( 1,1)is C R  where 
is  is the neuron activations and 

monotonically increasing for each 1,2,...,i n . 

 

The asymptotic stability of the zero solution of the delay-

differential system of Hopfield neural networks has been 

developed during the past several years. We refer to 

monographs by   Burton (Burton 1993) and Ye (Ye 1944) 

and the references cited therein. Much less is known 

regarding the asymptotic stability of the zero solution of the 

delay-difference control system of Hopfield neural 

networks. Therefore, the purpose of this paper is to 

establish sufficient condition for the asymptotic stability of 

the zero solution of equation (1) in terms of certain matrix 

inequalities. 

 

2. Preliminaries  
 

The following notations will be used throughout the 

paper. 
R  denotes the set of all non-negative real numbers; 


Z  denotes the set of all non-negative integers; n

R  denotes 

the n-finite-dimensional Euclidean space with the Euclidean 

norm .  and the scalar product between x  and y  is 

defined by ;Tx y  n m
R  denotes the set of all ( )n m -

matrices; and TA  denotes the transpose of the matrix A ; 

Matrix n nQ R  is positive semidefinite ( 0)Q   if 

0,Tx Qx   for all nxR . If   0( 0T Tx Qx x Qx  , resp.) 

for any 0x  , then Q  is positive (negative, resp.) definite 

and denoted by 0,( 0,Q Q   resp.). It is easy to verify 

that  0,Q  ( 0,Q   resp.) iff  0 :    

2
, ,T nx Qx x x  R  

( 0 : 
2
, ,T nx Qx x x   R  resp.) . 

 

Lemma 2.1 (Hale 1977) The zero solution of difference 

system is asymptotic stability if there exists a positive 

definite function ( ) : nV x R R  such that 

 
2

0 : ( ( )) ( ( 1)) ( ( )) ( ) ,V x k V x k V x k x k          

 

along the solution of the system. In case the above 

condition holds for all ( )x k V , we say that the zero 

solution is locally asymptotically stable. 
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Lemma 2.2 For any constant symmetric matrix n nM R , 

0TM M  , scalar /{0}s Z , vector function 

:[0, ] nW s R , we have 

 

1 1 1

0 0 0

( ( ) ( )) ( ) ( ) .

T
s s s

T

i i i

s w i Mw i w i M w i
  

  

   
    
   

    

 

We present the following technical lemmas, which will be 

used in the proof of our main result. 

    

3. Main results 

 

In this section, we consider the sufficient condition for 

asymptotic stability of the zero solution v  of (1) in terms 

of certain matrix inequalities. Without loss of generality, we 

can assume that * 0, (0) 0v S   and f =0 (for otherwise, 

we let *x v v   and define 

 
* *( ) ( ) ( ))S x S x v S v   . 

 

The new form of equation (1) is now given by 

 

( 1) ( ) ( ( )) ( )x k Ax k BS x k h Cu k      .             (2) 

 

This is a basic requirement for controller design. Now, we 

are interested designing a feedback controller for the system 

equation (2) as 

 

( ) ( ),u k Kx k  

 

 where K  is n m  constant control gain matrix.  

 

The new form of (2) is now given by 

 

( 1) ( ) ( ( )) ( )x k Ax k BS x k h CKx k      .           (3) 

 

Throughout this paper we assume the neuron activations 

i i
s x( ) , 1,2, ,i n  is bounded and monotonically 

nondecreasing on R , and 
i i

s x( )  is Lipschitz continuous, 

that is, there exist constant 0 1 2
i
l i n , , , ,  such that  

 

1 2 1 2( ) ( ) ,i i is r s r l r r  
1 2
r r , R .           (4) 

 

By condition equation (4), 
i i

s x( )  satisfy 

 

( ) ,i i i is x l x 1,2,...,i n .                 (5) 

 

Theorem 3.1 The zero solution of the delay-difference 

control system (3) is asymptotically stable if there exist 

symmetric positive definite matrices , ,P G W  and 

1[ , , ] 0nL diag l l  satisfying the following matrix 

inequalities of the form 

 

(1,1) 0 0

0 (2,2) 0 0

0 0 (3,3)



 
 

  
 
 

,            (6) 

 

 

where  

 

(1,1)= ,hG W  

 

(2,2)= ,W  

 

(3,3) .hG   

 

Proof Consider the Lyapunov function    

               

1 2( ( )) ( ( )) ( ( ))V y k V y k V y k  , where 

 
1

1( ( )) ( ) ( ) ( ),
k

T

i k h

V y k h k i x i Gx i


 

    

 
1

2 ( ( )) ( ) ( ),
k

T

i k h

V y k x i Wx i


 

   

 

G  and W  being symmetric positive definite solutions of 

(6) and  ( ) ( ), ( ) .y k x k x k h    

 

Then difference of ( ( ))V y k  along trajectory of solution of 

(3) is given by  

 

1 2( ( )) ( ( )) ( ( ))V y k V y k V y k    , 

  

where 

 
1

1

1

( ( )) ( ) ( ) ( )

( ) ( ) ( ) ( ),

k
T

i k h

k
T T

i k h

V y k h k i x i Gx i

hx k Gx k x i Gx i



 

  

 
     

 

 





 

1

2 ( ( )) ( ) ( )

( ) ( ) ( ) ( ),

k
T

i k h

T T

V y k x i Wx i

x k Wx k x k h Wx k h



 

 
   

 

   


 

 (7) 

 

Then we have            

 

1

( )[ ] ( ) ( ) ( )

( ) ( ).

T T

k
T

i k h

V x k hG W x k x k h Wx k h

x i Gx i


 

     


 

 

Using Lemma 2.2, we obtain 

 

1 1 11 1
( ) ( ) ( ) ( ) ( ) .

T
k k k

T

i k h i k h i k h

x i Gx i x i hG x i
h h

  

     

   
    
   

    

 

 From the above inequality it follows that:  
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1 1

( )[ ] ( ) ( ) ( )

1 1
( ) ( ) ( )

T T

T
k k

i k h i k h

V x k hG W x k x k h Wx k h

x i hG x i
h h

 

   

     

   
   
   
 

 

 

1
(1,1) 0 0

1
( ), ( ), ( ( )) 0 (2,2) 0

0 0 (3,3)

k
T T T

i k h

x k x k h x i
h



 

 
  

   
  

 

  

    

1

( )

( )

1
( ( ))

k

i k h

x k

x k h

x i
h   

 
 
 

  
 
 
 
 



 

 

  ( ) ( )Ty k y k  

 

where  

 

(1,1)= ,hG W  

 

(2,2)= ,W  

 

(3,3) hG  , 

 

1

( )

( ) ( )

1
( ( ))

k

i k h

x k

y k x k h

x i
h



 

 
 
 

   
 
 
 
 



. 

 

By the condition (6), ( ( ))V y k  is negative definite, 

namely there is a number 0   such that 

2
( ( )) ( ) ,V y k y k    and hence, the asymptotic stability 

of the system immediately follows from Lemma 2.1. This 

completes the proof.  

4.  Conclusions      

In this paper, based on a discrete analog of the Lyapunov 

second method, we have established a sufficient condition 

for the asymptotic stability of delay-difference control 

system of Hopfield neural networks in terms of certain 

matrix inequalities.  
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